MeHg Developing Exposure Causes DNA Double-Strand Breaks and Elicits Cell Cycle Arrest in Spinal Cord Cells

نویسندگان

  • Fabiana F. Ferreira
  • Dib Ammar
  • Gilian F. Bourckhardt
  • Karoline Kobus-Bianchini
  • Yara M. R. Müller
  • Evelise M. Nazari
چکیده

The neurotoxicity caused by methylmercury (MeHg) is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxoguanine glycosylase 1 (OGG1) protects cells from DNA double-strand break damage following methylmercury (MeHg) exposure.

Methylmercury (MeHg) is a potent neurotoxin, teratogen, and probable carcinogen, but the underlying mechanisms of its actions remain unclear. Although MeHg causes several types of DNA damage, the toxicological consequences of this macromolecular damage are unknown. MeHg enhances oxidative stress, which can cause various oxidative DNA lesions that are primarily repaired by oxoguanine glycosylase...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Simulation of strand breaks induced in DNA molecule by radiation of proton and Secondary particles using Geant4 code

Radiotherapy using various beams is one of the methods for treating cancer, Hadrons  used   to  treat cancers  that  are  near critical organs. The most important part of the cell that is damage by ionizing radiation is DNA. In this study, damages induced in the  genetic material of  living cells (DNA) defined by  the  atomic model from the  protein data bank (PDB) have been studied by  radiati...

متن کامل

Cell cycle arrest at the initiation step of human chromosomal DNA replication causes DNA damage.

Cell cycle arrest in response to environmental effects can lead to DNA breaks. We investigated whether inhibition of DNA replication during the initiation step can lead to DNA damage and characterised a cell-cycle-arrest point at the replication initiation step before the establishment of active replication forks. This arrest can be elicited by the iron chelators mimosine, ciclopirox olamine or...

متن کامل

Evaluating Gamma-H2AX Expression as a Biomarker of DNA Damage after X-ray in Angiography Patients

Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015